ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Walter Meyer, J. W. Leighty, J. W. Thiesing, D. H. Timmons
Nuclear Science and Engineering | Volume 60 | Number 4 | August 1976 | Pages 405-420
Technical Paper | doi.org/10.13182/NSE76-A26902
Articles are hosted by Taylor and Francis Online.
Albedos were experimentally determined for a spectrum of fast fission neutrons incident on a 24- × 24- × 9-in. concrete slab and a 24- × 24- × 6-in. cold-rolled steel slab. The experimental dose albedos were compared with those from Oak Ridge National Laboratory (ORNL) 05R Monte Carlo calculations and with orders-of-scattering calculations performed using readily available multigroup cross sections. The source of fast neutrons for the experimental studies was the Kansas State University Triga Mark II reactor; the direct and reflected neutron spectra were detected using a 2- × 2-in. liquid-scintillation spectrometer system. A computer code has been developed to normalize the experimental reflected spectra to a reference direct neutron beam measurement, to calculate the experimental dose albedos, and to evaluate the Monte Carlo dose albedos in terms of the experimental conditions. A comparison of the Monte Carlo and experimental results showed similar trends and structure, but the experimental dose albedos were smaller than the calculated ones by an average of 70 to 80%. The large energy bin widths and inaccuracies in the cross sections (errors up to 65%) used in the Monte Carlo calculations have contributed to the differences between the calculated and experimental results. Orders-of-scattering calculations for steel were performed using the ORNL DLC-2B 99-group cross-section set and similar calculations were performed for concrete using the DLC-9/FARS group cross-section set. In general, the orders-of-scattering calculated reflected spectra compare well with the experimental fast-neutron reflection spectra. Discrepancies arise in the orders-of-scattering calculated results at particular energies and scattering angles due to deficiencies identified in the multigroup compilations.