ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Edward W. Larsen
Nuclear Science and Engineering | Volume 60 | Number 4 | August 1976 | Pages 357-368
Technical Paper | doi.org/10.13182/NSE76-A26897
Articles are hosted by Taylor and Francis Online.
We construct an asymptotic solution of the neutron transport equation in a large heterogeneous medium using a multiscale method. The solution is asymptotic with respect to a small dimensionless parameter, ϵ, which is defined as the ratio of a mean-free-path to the diameter of the medium. The leading term of the solution is the product of two functions, one determined by a cell calculation and the other as the solution of a diffusion equation. The coefficients in the diffusion equation contain functions that are determined by cell calculations ard are then averaged over the cell. We compare the asymptotic diffusion coefficients to other “homogenized” dif usion coefficients that have been proposed in the literature and show that a substantial numerical disagreement exists for a large class of problems. We also give a physical interpretation to the asymptotic solution and to the numerical results concerning the asymptotic diffusion coefficients.