ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
Samuel L. Gralnick
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 302-310
Technical Paper | doi.org/10.13182/NSE76-A26886
Articles are hosted by Taylor and Francis Online.
This paper presents a derivation of the conservation-law form of the single energy group transport equation in an axisymmetric toroidal coordinate system formed by rotating a nest of smooth, simply closed, plane curves of arbitrary parametric description about an axis that does not intersect the nest. This general equation can be used for generating equations specific to particular cross-section geometries or as the basis of a finite difference equation for the general case. The effect of both the toroidal and poloidal curvatures of the system are investigated, and criteria for the validity of cylindrical and planar approximations are established. The diffusion equation for this geometry is derived, and it is shown to be formally homologous to the “r-θ” cylindrical diffusion equation if the coordinate system is orthogonal and if the azimuthal coordinate, , can be ignored.