ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Suresh Garg, Feroz Ahmed, L. S. Kothari
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 276-287
Technical Paper | doi.org/10.13182/NSE76-A26884
Articles are hosted by Taylor and Francis Online.
Using a multigroup discrete-ordinate form of the transport equation, we have calculated thermal-neutron spectra along four directions at different distances from the source plane within beryllium assemblies of dimensions 35.6 × 35.6 × 50.8 cm3 and 25.4 × 25.4 × 50.8 cm3. In both assemblies our calculated spectra in the forward direction at various distances from the source plane agree well with the corresponding observations of Lake and Kallfelz everywhere, except in a small energy region around 0.007 eV. We show that the increase in the proportion of cold neutrons with distance observed by them arises mainly because of the uncollided neutron flux and that the remaining distribution, i.e., the collided flux, attains pseudo-equilibrium conditions within 20 cm of the source in the larger assembly. Such equilibrium conditions are not established in the smaller assembly. We show that the conclusion drawn by Lake and Kallfelz—that their measured results contradict the earlier diffusion theory results of Ahmed et al.—is not justified. If anything, these measurements lend support to the diffusion theory results.