ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 262-275
Technical Paper | doi.org/10.13182/NSE76-4
Articles are hosted by Taylor and Francis Online.
The effective delayed neutron fraction from fission was determined for an unreflected uranium (93.2 wt% 235U) metal sphere from the ratio of time-correlated counts in a randomly pulsed neutron measurement to those in a Rossi-α measurement. In the randomly pulsed neutron measurements, a 252Cf source was placed in the sphere which contained a fission counter that, because of its location, did not count neutrons directly from the source. Neutrons from spontaneous fission of 252Cf initiated fission chains in the sphere, and the fission counter detected events from the interaction of neutrons from these fission chains with the uranium of the fission counter. A Type I time analyzer was triggered each time a 252Cf nucleus fissioned and recorded the time distribution of neutrons from the fission chains initiated by neutrons from californium at t = 0. The delayed neutron fraction by this method (60.2 ± 0.8 × 10−4) is ∼11% lower than that from other measurements or calculations that are all in agreement. This low value may be due to an improper theoretical formulation for the correction of point kinetics for spatial effects. The value of this correction factor estimated by another theoretical formulation is 30% larger. An 11% larger correction for spatial effects would produce agreement between this measurement and previously measured results.