ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Smitha Manohar, J. N. Sharma, B. V. Shah, P. K. Wattal
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 96-102
Technical Paper | doi.org/10.13182/NSE07-A2688
Articles are hosted by Taylor and Francis Online.
In-house R&D studies have resulted in the development of processes for the bulk separation of trivalent actinides and lanthanides from radioactive high-level liquid waste. Synthesis of solvents, namely, n-octyl (phenyl)-N,N-di-isobutyl carbamoyl methyl phosphine oxide and diglycolamide-based tetra (2-ethylhexyl) diglycolamide (TEHDGA), at the required purity has been carried out, and a suitable process for their respective use in actual application has been developed. Inactive scale engineering runs comprised of simultaneous extraction and stripping operations were carried out to establish the process on an engineering scale, including reuse of the solvent system. The composition of surrogate high-level waste (HLW) used at engineering-scale studies corresponds to first-cycle raffinate from reprocessing of long-cooled pressurized heavy water reactor fuel with a burnup of 6500 MWd/tonne. Since trivalent lanthanides and actinides exhibits similar extraction behavior at higher acidity, cerium and lanthanum were only used in making surrogate HLW to represent all the trivalent lanthanides and actinides. Indigenously developed mixer-settlers using a passive system of mixing were used for these runs. Over a period of ~10 h, ~300 l of surrogate HLW solutions were contacted with solvent. The results of such repeated trials have shown near-total removal of cerium and lanthanum (>99.8% and 97%, respectively) at aqueous-to-organic ratio of 2.5:1 for a TEHDGA system. As the distribution coefficient values for trivalent actinide (241Am) are found to be significantly higher than those for trivalent lanthanides for both of the solvent systems under consideration, it can be inferred that separation of trivalent actinides along with lanthanides could be feasible using these solvent systems.