ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
S. K. Bhattacharyya, G. J. Russell, W. K. Foell
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 147-168
Technical Paper | doi.org/10.13182/NSE76-A26871
Articles are hosted by Taylor and Francis Online.
The Doppler effect for 235U-enriched UO2 fuel pellets has been measured by the Pulsed Activation Doppler (PAD) technique in a TRIGA reactor. A combination of static electrical preheating and pulsed fission heating during irradiation was used to perform the measurements at temperatures extending from 300 K to the melting point of UO2 (3115 K). The 235U enrichment in the experimental samples investigated ranged from 0.22 to 12% by weight. Measurements were made at the highest temperatures ever achieved in Doppler experiments and represent the first activation Doppler measurements under partially molten conditions of UO2. Two sizes of pellets were used in the work, with nominal surface-to-mass ratio values of 0.63 and 1.08 cm2/g, respectively. The experimentally determined values of the Doppler ratio were in good agreement with resonance integral ratios determined from GAROL calculations and extrapolations of the low-temperature Hellstrand correlation. Because the technique involved transient heating, an equivalent static temperature (θeff) was defined for each experimental pellet. Explicit correlations for the Doppler ratio as a function of the parameter were determined from the present data. It is shown that a linear function in the parameter adequately describes the behavior of the data.