ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
U. C. Bergmann, P. Grimm, F. Jatuff, M. F. Murphy, R. Chawla
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 86-95
Technical Paper | doi.org/10.13182/NSE07-A2687
Articles are hosted by Taylor and Francis Online.
The reaction-rate ratio C8/Ftot, neutron captures in 238U to total fissions, has been measured in 80 out of 96 fuel rods of a Westinghouse SVEA-96+ boiling water reactor fuel assembly. High-resolution gamma spectroscopy was performed on individual fuel rods, withdrawn from the SVEA-96+ assembly after irradiation at low power in the center of the LWR-PROTEUS reactor core. Absolute experimental errors of 1.7% and relative errors of 0.6% (for rod-to-rod ratios) were achieved. The experimental results were used as a database for validation of four different calculational tools: CASMO-4 and HELIOS as commercial assembly codes, the Paul Scherrer Institute in-house code BOXER, and the Monte Carlo transport code MCNPX. In general, on the level of a few percent, there is good agreement between experiment and calculations, the use of a recently proposed 239Np gamma-ray emission probability improving even further the agreement. However, the highly heterogeneous design of the SVEA-96+ assembly (both in terms of material compositions and neutron moderation conditions) causes some problems. Clear deviations from assembly mean values are found among the burnable absorber fuel rods that are grouped in clusters (direct neighbors), a unique feature of this assembly design. For these rods the codes overpredict C8/Ftot by several percent, including MCNPX. Additional trends, not present in the results from the Monte Carlo calculation which generally shows the best overall agreement with experiment, are identified for the deterministic codes.