ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Harvey J. Amster, M. Jahed Djomehri
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 131-142
Technical Paper | doi.org/10.13182/NSE76-A26869
Articles are hosted by Taylor and Francis Online.
Successive solutions to two coupled integral equations provide the expected statistical error of any Monte Carlo calculation in which the external source is specified and the “score” resulting from each collision has a known probability distribution. Each equation can be transformed into a differential-integro form that is adjoint to the transport equation. This result agrees with the stochastic theory of Bell for those special situations described by both theories. The coupled integral equations in the Monte Carlo theory of Coveyou et al. have other adjoint properties because they describe physically different quantities. In the present theory, the first equation (for the expected value), but not the second (for the expected squared value), can readily be understood in terms of Selengut's general interpretation of adjoint solutions. The principal aim of this work is to provide a method for determining in advance whether or not development of a contemplated Monte Carlo program would be worthwhile. Any of the approximations commonly applied to the transport equation can be used. Some examples are worked out by diffusion theory, interpreted, and tested for accuracy.