ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hyun Chul Lee, Jae Man Noh, Hyung Kook Joo, Deokjung Lee, Thomas J. Downar
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 74-85
Technical Paper | doi.org/10.13182/NSE06-32
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the Fourier convergence analysis of four methods for performing two-dimensional/one-dimensional (2-D/1-D) coupling to solve neutron diffusion eigenvalue problems (EVPs). The four methods differ principally in the manner of using the interface currents or node average fluxes to perform the 2-D/1-D coupling. Method A uses net currents, method B employs partial currents, method C uses a current correction factor, and method D uses an analytic expression for the axial net currents. In a previous paper, we analyzed the convergence behavior of these methods for the 2-D/1-D coupling of the fixed source problem (FSP). In this paper, the convergence performance of these methods is analyzed for the EVP using a one-group neutron diffusion EVP in a homogeneous infinite slab geometry. Among the four methods, method A diverges for small mesh sizes as it did in the FSP, whereas the other methods are stable regardless of the mesh size. The spectral radii of methods C and D are identical while the latter had a smaller spectral radius than the former in an FSP. The spectral radii of methods C and D are smaller than that of method B in the range of practical mesh size. The spectral radii approach one for all the methods as the mesh size increases, while in the FSP the spectral radii of method B approached a finite positive value and those of the other methods approached zero. For practical applications, method C has several advantages over the other methods and is the preferred 2-D/1-D coupling method for EVPs.