ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
A. H. Kazi
Nuclear Science and Engineering | Volume 60 | Number 1 | May 1976 | Pages 62-73
Technical Paper | doi.org/10.13182/NSE76-A26858
Articles are hosted by Taylor and Francis Online.
The Army Pulse Radiation Facility Reactor has been pulsed to 17 cents above prompt criticality using external reflector control. This is a novel method of fast-pulse reactor operation. The purpose of this work is to provide a high neutron fluence uniform over a 106-mm-diam, 198-mm-high in-core irradiation cavity or “glory hole,” in both pulse and steady-state modes of operation. The 106-mm-diam glory hole is obtained by removing from the standard core a cylindrical center fuel element, the “safety block,” and replacing it functionally by three 50.8-mm-thick, 305-mm-high scramable copper reflectors positioned 5.3 mm from the reactor shroud. The cost of this modification was favorable since fabrication of new fuel pieces was unnecessary. To date this assembly has been successfully pulsed to yields as high as 1.83 × 1017 fission/pulse. There is an ∼38% increase in prompt neutron lifetime in the reflected core due to the central cavity and the reflectors. The prompt negative shutdown coefficient is decreased only slightly so that the reflected core can be pulsed with requisite safety and satisfactory reproducibility. At the routine pulse level of 1.5 × 1017 (±2%) fissions, the pulse width is 66 µsec, the neutron fluence in the glory hole is 5.0 × 1014 n/cm2 (>10 keV), where the peak neutron flux is 6.4 × 1018 n/(cm2 sec) and the gamma-ray dose is 1.6 × 105 R. With a thermal-neutron flux trap, the peak thermal-neutron flux is 1 × 1018 n/(cm2 sec). With a neutron-to-gamma-ray converter, the peak gamma-ray emission rate is 3 × 109 R/sec. Operation at 10 kW in a steady-state mode produces a neutron flux (>10 keV) of 1012 n/(cm2 sec). Experiments have been performed previously to evaluate the use of reflectors as control and pulse rods. The present method of operation extends the use of reflectors to provide the principal mechanical shutdown mechanism in superprompt critical pulse operation.