ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Makoto Sobajima
Nuclear Science and Engineering | Volume 60 | Number 1 | May 1976 | Pages 10-18
Technical Paper | doi.org/10.13182/NSE76-A26852
Articles are hosted by Taylor and Francis Online.
It was found that the results of the RELAP-3 code, which is one of the typical analytical codes for analysis of the loss-of-coolant accident (LOCA) of light water reactors, do not agree well with the results from the ROSA-I experiments under certain break conditions. It was determined that the discharge coefficient used in the code as a parameter can be correlated with the quality of the discharged fluid and that the calculated liquid mass transient does not always agree with the experimental one when a constant bubble escape velocity is assumed. These difficulties come from the possibility of shortcomings of the model dealing with the LOCA phenomena. An attempt was made to improve these aspects of the code by incorporating the correlation of the discharge coefficient with the quality and with Wilson's experimental interpretation of the bubble velocity and certain assumptions in its application. The results obtained by the modified code are in good agreement with both those from the ROSA-I experiment and experiments at Hitachi Ltd.