ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
T. Asaoka, Y. Nakahara, K. Horikami, T. Nishida, T. Suzuki, Y. Taji, S. Miyasaka, and J. Hirota
Nuclear Science and Engineering | Volume 59 | Number 4 | April 1976 | Pages 326-336
Technical Paper | doi.org/10.13182/NSE76-A26835
Articles are hosted by Taylor and Francis Online.
The coarse-mesh rebalance method is adopted in Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process to obtain the eigenvalue of a nuclear reactor system. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone. This rebalance factor is multiplied to the weight of each fission neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the present rebalance method gives a new usable sampling technique to get a better estimate of the number of neutrons lost or produced in each coarse-mesh zone by modifying the value obtained directly from the normal Monte Carlo calculation.