ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. K. Cho, B. J. Yun, C.-H. Song, G. C. Park
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 40-54
Technical Paper | doi.org/10.13182/NSE07-A2683
Articles are hosted by Taylor and Francis Online.
In a nuclear reactor vessel downcomer incorporating the safety feature of direct vessel injection (DVI), the direct bypass of emergency core coolant (ECC) is activated during the reflood phase of a large-break loss-of-coolant accident due to momentum transfer between the downward liquid film and transverse gas. Direct ECC bypass is reportedly the major bypass mechanism of ECC, and various experiments have been performed to obtain detailed information about the ECC bypass in a DVI downcomer. In the present study, a model of the direct ECC bypass was developed based on two-dimensional two-fluid equations for the adiabatic two-phase flow to predict the ECC bypass flow rate. The direct ECC bypass fractions were calculated with various interfacial friction factor correlations, and the results were compared with the available experimental data. The values predicted by the current model showed reasonably good agreement with the experimental data at bypass fractions >40% when applying the interfacial friction factor model developed in a countercurrent flow condition. However, when the bypass fraction was <40%, models incorporating cocurrent annular flow provided better results than those with countercurrent flow. These results suggest that a transition occurs from a smooth film to a rough film as the gas flow rate increases, and hence, interfacial friction factor models that adequately incorporate this transition are necessary to predict the direct ECC bypass phenomenon.