ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Seungwon Shin, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 24-39
Technical Paper | doi.org/10.13182/NSE07-A2682
Articles are hosted by Taylor and Francis Online.
The behavior of an evaporating thin liquid film on a nonuniformly heated cylindrical rod with both parallel and cross vapor flow has been numerically investigated. The aim is to develop a mechanistic model for local dryout in boiling water reactors (BWRs). The liquid film on a full-length BWR fuel rod may experience significant axial and azimuthal heat flux gradients and cross flow due to variations in the thermal-hydraulic conditions in surrounding subchannels caused by proximity to an inserted control blade tip and/or the top of part-length fuel rods. Such heat flux gradients coupled with localized cross flow may cause the liquid film on the fuel rod surface to rupture by hydrodynamic instability, thereby forming a dry hot spot. These localized dryout phenomena cannot be accurately predicted by traditional subchannel analysis methods in conjunction with empirical dryout correlations. To this end, a numerical model based on the level contour reconstruction method has been developed. The model includes a ghost-cell extrapolation technique to handle the complex interface geometry. Additionally, a sharp interface temperature technique has been implemented. Application of the model to BWR fuel rods shows that localized cross flow coupled with heat flux gradients can lead to liquid film rupture and dry spot formation.