ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
C. H. M. Broeders, G. Kessler
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 1-23
Technical Paper | doi.org/10.13182/NSE07-A2681
Articles are hosted by Taylor and Francis Online.
Denatured reactor plutonium with a 238Pu isotopic content of ~6% or somewhat more can be produced in a suitably adapted fuel cycle. Several such fuel cycle options are proposed. Reenriched reprocessed 235U/236U/238U, which can be blended with some low-enriched 235U/238U fuel, leads, after one burnup cycle of 50 to 60 GWd/tonne in a pressurized water reactor (PWR) core, to denatured reactor plutonium with more than 8% 238Pu isotopic content. Presently existing reactor plutonium with ~2.8% 238Pu from spent fuel with a burnup of 50 GWd/tonne can also be converted in PWRs, during one or two burnup cycles over 50 to 60 GWd/tonne into denatured reactor plutonium. This is also demonstrated by burnup calculations for different fuel cycle scenarios using, e.g., reenriched reprocessed uranium, thorium, and minor actinides. Denatured reactor plutonium with 6% or somewhat more 238Pu isotopic content can be considered as a proliferation-resistant fuel and could be treated like low-enriched (<20% 235U) uranium fuel. It can be incinerated by multiple recycling in PWRs or fast reactors. Advanced aqueous reprocessing or pyroprocessing as well as related refabrication methods, as they are being developed for transmutation scenarios of the minor actinides, would be best suited for such adapted fuel cycle options. Safeguards needs and aspects for the different proposed fuel cycle options are discussed.