ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Tunc Aldemir
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 497-507
Technical Note | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2680
Articles are hosted by Taylor and Francis Online.
Probabilistic dynamics (or continuous event tree approach) is a methodology used for the probabilistic risk assessment of systems where statistical dependence between failure events may arise because of indirect coupling through the controlled/monitored physical process and/or direct coupling through software/hardware/human intervention. Both the continuous and discrete time/space forms of the probabilistic dynamics frameworks assume that the set of possible trajectories describing the evolution of the system as a function of time in its state-space consists of measurable (and hence compact) subsets. Using a reduced-order boiling water reactor model, it is shown that this assumption may not be valid for systems of practical interest to nuclear engineering. The consequences of violating the measurability assumption on the probabilistic model accuracy are illustrated for the discrete time/state-space approach. Some guidelines for the choice of time/state discretization are also proposed.