ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
R. Paviotti Corcuera
Nuclear Science and Engineering | Volume 58 | Number 3 | November 1975 | Pages 278-290
Technical Paper | doi.org/10.13182/NSE75-A26777
Articles are hosted by Taylor and Francis Online.
Systematic discrepancies between experimental and calculated neutron spectra in different fast-neutron media with high 238U content were observed, allowing the uncertainties in certain 238U neutron cross sections to be considered as the source of such discrepancies. Sensitivity studies, as well as the effect of the former uncertainties on such fast-neutron spectra showed that 238U (n, n′) inelastic scattering is by far the main parameter determining the spectrum over a large energy range. Uranium-238 (n, γ) neutron capture is important only at low energies, below the 238U (n, n′) threshold. The (n,γn′) reaction in 238U using Fricke's data leads to an increase in the discrepancies in neutron spectra though this cross section could be considered negligible according to other arguments. A general least-squares adjustment of the 238U total inelastic cross sections, on the neutron spectrum discrepancies, was carried out between 70 keV and 3.6 MeV, using two different inelastic probability matrices (those of ENDF/B-III and UKNDL-DFN 401), which were chosen among several evaluations of this reaction. The adjusted cross sections obtained in an energy mesh corresponding to lethargy intervals of 0.5 imply a systematic reduction of 20 to 30% relative to the initial values in both files, but they appear to be in good agreement with other recent (coarse-mesh) adjusted data, including the KFK-INR set.