ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bernard Rottner
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 463-474
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2677
Articles are hosted by Taylor and Francis Online.
The activity of a radioactive waste package is usually evaluated from gamma measurements associated with transfer functions. These functions are calculated assuming that both activity and mass distributions are homogeneous. But, generally, activity and mass distributions are not homogeneous. This paper evaluates the effect of heterogeneities on the activity measurements on families of similar waste packages. An error arises, with a systematic part, leading to an overestimation or underestimation of the overall activity in a family of similar waste packages, and a stochastic part, whose mean effect on the overall activity of the family is null.In order to evaluate the effect of heterogeneities, numerical simulation of the filling of each package has been performed. Some filling parameters are randomly varied, according to the known characteristics of the real packages, so that the mass and activity distributions are different from one package to another but are always coherent with the characteristics of the real packages.These numerical simulations produce virtual families of packages. A way to fit and demonstrate the representativeness of the virtual family is described, so that the general results computed on this virtual family are applicable for the real family.