ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
L. L. Briggs, W. F. Miller, Jr., E. E. Lewis
Nuclear Science and Engineering | Volume 57 | Number 3 | July 1975 | Pages 205-217
Technical Paper | doi.org/10.13182/NSE75-A26752
Articles are hosted by Taylor and Francis Online.
A generalization is made of a previous phase-space finite element approximation of the second-order form of the one-group, two-dimensional neutron transport equation in x-y geometry. Three angular approximations are formulated and compared: continuous piecewise bilinear finite element, piecewise constant finite element, and discrete ordinate. These are incorporated into a unified formalism of discrete ordinate-like equations, enabling the spatial variables to be treated identically using piecewise linear or bilinear finite elements. The resulting equations are solved iteratively by a weighted conjugate gradient method in an improved version of the computer code FENT. Numerical and analytical comparisons of the angular approximations are made, and it is found that both piecewise bilinear and piecewise constant approximations in angle substantially mitigate ray effects. The mitigation is shown to be associated closely with transformation of the hyperbolic discrete ordinate equations to the elliptic operators of the discrete ordinatelike finite element approximations. This transformation is accompanied by the disappearance of the characteristics along the discrete lines of neutron travel, and, hence, by the appearance of physically artificial derivative terms normal to the lines of neutron streaming. These terms grow with the subdomains of the angular finite elements.