ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Lénárd Pál, Imre Pázsit
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 425-440
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2674
Articles are hosted by Taylor and Francis Online.
Neutron fluctuations in a constant multiplying medium (zero power noise) and those in a fluctuating medium (power reactor noise) have been traditionally considered as two separate disciplines that exist in two opposing limiting areas of operation (low and high power, respectively). They have also been treated by different mathematical methods, i.e., master equations and Langevin equation, respectively. In this paper we develop a theory of neutron fluctuations in a medium randomly varying in time, based on a forward-type master equation approach. This method accounts for both the zero power and the power reactor noise simultaneously. Factorial moments and related quantities (variance, power spectrum, etc.) of the number of the neutrons are calculated in subcritical systems with a stationary external source. It is shown that the pure zero power and power reactor noise results can be reconstructed in the cases of vanishing system fluctuations and high power, respectively, the latter being a nontrivial result. Further, it is shown that the effect of system fluctuations on the zero power noise is retained even in the limit of vanishing neutron number (reactor power). The results have thus even practical significance for low-power systems with fluctuating properties. The results also have a bearing on other types of branching processes such as evolution of biological systems, germ colonies, epidemics, etc., which take place in a time-varying environment.