ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Matthew A. Jessee, David J. Kropaczek
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 378-385
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2670
Articles are hosted by Taylor and Francis Online.
An optimization method has been developed to determine the optimal fresh fuel rod configurations, fresh streams, and fresh bundle design placements given a known exposed fuel loading pattern and operational strategy for boiling water reactors. The optimization method is based on a first-order approximation of various core parameters, such as hot excess reactivity and critical power ratio, using fuel rod perturbations to the reference fresh bundle designs. A simulated annealing optimization algorithm is shown to produce fresh bundle designs, consisting of rods selected from a user-defined set of rod types that optimize the core design with respect to its design constraints.The method utilizes a linear superposition method based upon sensitivity coefficients to approximate core parameters. A parallel computing system was implemented to decrease wall clock time for the numerous lattice physics and core simulator calculations. A periodic update of the reference bundle design, without the computational burden of updating the sensitivity coefficients, was introduced and is shown to significantly improve the accuracy of the approximation model. Application of the method demonstrates that improved core designs are achieved when a many-fresh bundle design (i.e., stream) solution is considered as part of the design space. Six-stream (and higher) core designs that increase fuel utilization while simultaneously reducing manufacturing costs through reduction of fuel rod types fabricated, previously unattainable with existing methodologies, are now possible.