ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Juan-Luis François, Cecilia Martín-del-Campo, Luis B. Morales, Miguel-Angel Palomera
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 367-377
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2669
Articles are hosted by Taylor and Francis Online.
The development of a basic scatter search (SS) algorithm for the optimization of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices is presented in this paper. Scatter search is considered an evolutionary algorithm that constructs solutions by combining others. The goal of this methodology is to enable the implementation of solution procedures that can derive new solutions from combined elements. The main mechanism for combining solutions is such that a new solution is created from the strategic combination of other solutions to explore the solutions' space. Thus, an algorithm based on SS to design a 10 × 10 fuel pin array with two water zones and diagonal symmetry was developed. The lattice performance is evaluated using a global objective function, in which the multiobjective optimization problem is converted into a single-objective problem using weighting factors to attach decision-maker preferences to each objective. The objective function is evaluated using values obtained from the HELIOS code. The results show that the main design variables (average lattice enrichment and power peaking factor) are improved, related to the reference lattice, while the reactivity requirement is satisfied. Results also demonstrate that the SS method is an efficient optimization algorithm when it is applied to the BWR design and optimization problem. Its main features are based on the use of heuristic rules since the beginning of the process, which allows directing the optimization process to the solution, and the use of the diversity mechanism in the combination operator, which allows covering the search space in an efficient way.