ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
James P. Keener, Donald S. Cohen
Nuclear Science and Engineering | Volume 56 | Number 4 | April 1975 | Pages 354-359
Technical Paper | doi.org/10.13182/NSE75-A26682
Articles are hosted by Taylor and Francis Online.
A multi-scale perturbation method for studying nonlinear oscillations and their stability in higher order systems is developed. The technique is applied to the two-temperature reactor model Stability boundaries involving the various parameters are established and easily interpretable analytical expressions for nonlinear oscillations are presented. The method requires neither phase plane systems nor autonomous equations and thus provides an analytical tool for investigating higher order and space-dependent reactor models.