ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Clifton R. Drumm, Wesley C. Fan, Leonard Lorence, Jennifer Liscum-Powell
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 355-366
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2668
Articles are hosted by Taylor and Francis Online.
Charged-particle transport is characterized by scattering cross sections that are extremely large and forward-peaked, requiring specialized treatment as compared with neutral-particle transport. The extended-transport correction (ETC) is known to be an effective method to treat elastic scattering of electrons. We apply the ETC to inelastic downscattering of electrons, and evaluate the effectiveness of the method by comparing the scattering moments for the screened Rutherford scattering kernel and for scattering with a deterministic cosine. The ETC approximation results in a -function in angle downscatter source term, for energy loss without direction change, which has been incorporated into the CEPTRE discrete ordinates code in a manner that is compatible with general quadrature sets, not requiring a specialized Galerkin quadrature. The ETC approximation also makes it possible to develop a first-collision source technique that is effective for charged-particle transport, by including particles that have downscattered in energy without direction change in the uncollided-flux solution. We demonstrate the effectiveness of these techniques for problems involving electron beam sources incident on infinite and finite water cylinders and compare the energy- and charge-deposition distributions with ITS Monte Carlo results with good agreement.