ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Paul B. Bleiweis, William E. Kastenberg, David Okrent
Nuclear Science and Engineering | Volume 56 | Number 2 | February 1975 | Pages 152-170
Technical Paper | doi.org/10.13182/NSE75-A26654
Articles are hosted by Taylor and Francis Online.
Two angular-dependent liquid-metal fast breeder reactor (LMFBR) disassembly models are derived in this paper. These models are based on the physical assumptions of the VENUS (r,z) computer codes (VENUS and VENUS-II). A two-dimensional (r, θ) model is derived to study disassembly in an infinitely long cylinder. The second model is an approximate three-dimensional model which employs the Galerkin method (a subset of the method of weighted residuals) to solve for the three-dimensional motions of materials during disassembly. An iterative technique which is employed to calculate trial and weighting functions for the Galerkin method is proposed and tested. The two angular-dependent disassembly models are used to study four configurations of a reference1000-MW(e) LMFBR. Most of the calculations performed employ the two-dimensional (r, θ) model to estimate the effects of angular dependence on three-dimensional calculations. In addition, a number of three-dimensional calculations are presented both to validate the model and to study the relative effect of angular motion on LMFBR disassemblies. The results indicate that angular motion is second order compared to radial and axial motions for the four configurations studied. These calculations also indicate that the models derived are relatively simple and inexpensive to use and can be employed to study other configurations which may be more dependent cm angular motion during a disassembly accident than the four chosen for this study.