ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Paul B. Bleiweis, William E. Kastenberg, David Okrent
Nuclear Science and Engineering | Volume 56 | Number 2 | February 1975 | Pages 152-170
Technical Paper | doi.org/10.13182/NSE75-A26654
Articles are hosted by Taylor and Francis Online.
Two angular-dependent liquid-metal fast breeder reactor (LMFBR) disassembly models are derived in this paper. These models are based on the physical assumptions of the VENUS (r,z) computer codes (VENUS and VENUS-II). A two-dimensional (r, θ) model is derived to study disassembly in an infinitely long cylinder. The second model is an approximate three-dimensional model which employs the Galerkin method (a subset of the method of weighted residuals) to solve for the three-dimensional motions of materials during disassembly. An iterative technique which is employed to calculate trial and weighting functions for the Galerkin method is proposed and tested. The two angular-dependent disassembly models are used to study four configurations of a reference1000-MW(e) LMFBR. Most of the calculations performed employ the two-dimensional (r, θ) model to estimate the effects of angular dependence on three-dimensional calculations. In addition, a number of three-dimensional calculations are presented both to validate the model and to study the relative effect of angular motion on LMFBR disassemblies. The results indicate that angular motion is second order compared to radial and axial motions for the four configurations studied. These calculations also indicate that the models derived are relatively simple and inexpensive to use and can be employed to study other configurations which may be more dependent cm angular motion during a disassembly accident than the four chosen for this study.