ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Ryan G. McClarren, James Paul Holloway, Thomas A. Brunner, Thomas A. Mehlhorn
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 290-299
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2663
Articles are hosted by Taylor and Francis Online.
An implicit Riemann solver for the one- and two-dimensional time-dependent spherical harmonics approximation (Pn) to the linear transport equation is presented. This spatial discretization scheme is based on cell-averaged quantities and uses a monotonicity-preserving high resolution method to achieve second-order accuracy (away from extreme points in the solution). Such a spatial scheme requires a nonlinear method of reconstructing the slope within a spatial cell. We have devised a means of creating an implicit (in time) method without the necessity of a nonlinear solver. This is done by computing a time step using a first-order scheme and then, based on that solution, reconstructing the slope in each cell, an implementation that we justify by analyzing the model equation for the method. This quasilinear approach produces smaller errors in less time than both a first-order scheme and a method that solves the full nonlinear system using a Newton-Krylov method.