ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
O. J. Sheaks, L. Harold Sullivan, Raymond L. Murray
Nuclear Science and Engineering | Volume 51 | Number 3 | July 1973 | Pages 331-335
Technical Note | doi.org/10.13182/NSE73-A26610
Articles are hosted by Taylor and Francis Online.
Operations are performed on the neutron transport equation in general form to obtain an exact multigroup Fick’s Law formalism consistent with the standard multigroup conservation equation. The inherent accuracy of the transport equation is maintained in the derived form of the spatially dependent “diffusion coefficient,” which is shown to be highly dependent on the angular flux spectra. Numerical investigations on fast reactor configurations substantiate the feasibility of incorporating a transport calculated diffusion coefficient in existing diffusion theory codes for reactor design and analysis with dual utility: (a) the errors in diffusion calculations due to incorrect diffusion coefficients can be separated from boundary-condition errors, and (b) the diffusion calculations of certain parametric design studies can be improved to accuracy approaching that of transport theory using spatially averaged diffusion coefficients obtained from a single transport calculation.