ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. R. Ferguson, K. F. Hansen
Nuclear Science and Engineering | Volume 51 | Number 2 | June 1973 | Pages 189-205
Technical Paper | doi.org/10.13182/NSE73-A26594
Articles are hosted by Taylor and Francis Online.
A general class of two-step alternating-direction semi-implicit methods is proposed for the approximate solution of the semi-discrete form of the space-dependent reactor kinetics equations. An exponential transformation of the semidiscrete equations is described which has been found to significantly reduce the truncation error when several alternating-direction semi-implicit methods are applied to the transformed equations. A subset of this class is shown to be a consistent approximation to the differential equations and to be numerically stable. Specific members of this subset are compared by considering two-dimensional numerical experiments. An “optimum” method, termed the nonsymmetric alternating-direction explicit method, is extended to three-dimensional geometries. Subsequent three-dimensional numerical experiments confirm the truncation error, accuracy, and stability properties of this method.