ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Mohamed Dahmani, Robert Roy
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 236-249
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE155-236
Articles are hosted by Taylor and Francis Online.
The design of new generations of nuclear reactors will involve fine representations of the theoretical models. Advanced computational methods capable of solving large-scale problems dealing with large and complex systems are required. Therefore, the solution to challenging large-scale neutron transport problems is becoming more and more pressing in nuclear engineering applications. The increase in high-performance computing resources have made possible direct application of transport methods to large-scale computational models. However, many numerical acceleration techniques common to lattice transport codes are not applicable to three-dimensional geometries with heterogeneous material zones, especially for the eigenvalue problems with high-dominance scattering ratio. Consequently, large heterogeneous reactor problems have remained computationally intensive and impractical for routine engineering applications. One of the alternatives is to use high-performance computing methods to solve such problems in reasonable time.In this context, we propose an approach based on high-performance computing techniques to solve large-scale neutron transport problems using a three-dimensional characteristics method. A performance model is then introduced to analyze the three-dimensional characteristics solvers in the context of hybrid shared/distributed memory modern architectures. Several numerical results and discussions are presented including a scalability analysis done to predict the performance on a large number of processors.