ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Dong H. Nguyen
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 370-381
Technical Paper | doi.org/10.13182/NSE73-A26572
Articles are hosted by Taylor and Francis Online.
The stability of a nuclear reactor with prompt feedback is examined when its eigenvalue (size, material buckling) is increased or decreased. Two models describing the temperature dependence of the Doppler coefficients T-1 and T-3/2 are used in the analysis, and their relative effectiveness in maintaining stability is compared. Both the eigenvalue and neutron flux of the nonlinear reactor are expanded in the perturbation parameter ∈, defined as the spatially weighted average of the change in neutron flux relative to the flux of the linear reactor. For a change in reactor eigenvalue, the equilibrium states of the neutron flux are obtained, accurate to the first order of feedback, but to an arbitrary order of perturbation. The stability of each state is examined.It is found that even for an overall negative prompt feedback, there exists a limit to the increase in reactor eigenvalue (or in neutron flux), beyond which instability may result. This limit depends on the initial conditions of the perturbed reactor. The neutron flux is shown to be more sensitive to a change ∈ than the reactor eigenvalue, and this sensitivity depends on the temperature variation of feedback. It is also shown that the T-1 variation of the negative Doppler coefficient is more effective than the T-3/2 variation in maintaining reactor stability when the reactor eigenvalue is increased.