ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Gabriele Grassi
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 208-222
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2657
Articles are hosted by Taylor and Francis Online.
A new space-angle multigrid technique has been developed to accelerate the free inner transport iterations based upon the method of characteristics (MOC). We present a two-level scheme that consists of a fine level on which the MOC transport calculation is performed and a more coarsely discretized phase-space in which a low-order problem is solved as an acceleration step. A flux-volume homogenization technique is employed to define the coarse-level cross sections. This entails the nonlinearity of the scheme. Restriction and prolongation operators are defined between the two levels. After each fine transport iteration, a low-order transport problem is iteratively solved on the homogenized grid. A coarser angular representation is used within an MOC-like framework. Discontinuity factors are employed to reconstruct the scalar incoming and outgoing currents on each region of the coarse discretization. The solution of the aforementioned low-order problem is used to correct the angular moments of the flux resulting from the previous free transport sweep. A complete description of the low-order operator and of the grid-to-grid transfer operators is given. A further application of the method to the acceleration of outer transport iterations is also presented. In order to test the effectiveness of this method, numerical tests for given benchmark geometries have been performed. Results are discussed.