ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. K. Dickens, G. L. Morgan, F. G. Perey
Nuclear Science and Engineering | Volume 50 | Number 4 | April 1973 | Pages 311-336
Technical Paper | doi.org/10.13182/NSE73-A26567
Articles are hosted by Taylor and Francis Online.
Cross sections for production of gamma rays due to neutron interactions with iron have been measured as a function of both neutron and gamma-ray energy. Two experimental configurations were used to obtain the data: a Nal-spectrometer system using the Oak Ridge Linear Accelerator as the neutron source and a Ge(Li)-spectrometer system using a pulsed Van de Graaff and the D( d, n) reaction as the neutron source. The Nal-spectrometer system, described completely in this report, was used to acquire data for 0.8 ≤ En ≤ 20 MeV and θγ = 125 deg, which were unfolded to obtain d2σ/dωdE values for gamma-ray energies between 0.7 and 10 MeV. The Ge(Li) system was used to obtain high resolution information on the production of discrete-line dσ/dω values for 4.85 ≤ En ≤ 9.0 MeV and θγ = 55, 75, and 90 deg. Our data are compared with previously reported experimental data and with the current ENDF/B evaluation. Although there is generally reasonable (20%) agreement, important differences among these data are discussed.