ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. M. Fletcher, C. J. Hardy
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 421-427
Technical Paper | doi.org/10.13182/NSE63-A26554
Articles are hosted by Taylor and Francis Online.
The extraction by TBP of nitrato complexes of metals occurs mainly by the formation of nonconducting complexes in which the oxygen of the PO group is covalently bound to the metal, e.g., P==0 → M. In other TBP complexes, this O atom is bonded to hydrogen, e.g., to a hydrogen atom of water, of an undissociated acid, or of the hydronium ion. Three features in the extraction of metal nitrates at trace concentration from nitric acid concentrations >7M which await interpretation are the second increase in the distribution coefficient, DM; the decrease in the magnitude of this second increase as the fraction of inert diluent increases; and the change in the temperature coefficient of DM from negative to positive. Extraction (i) by bonding of the phosphoryl oxygen to an aquo group (of the aquonitrato metal complex), or (ii) by nitrato acids, do not explain these features. Measurements of the conductivity and viscosity of 100% TBP-HNO3-H2O phases are consistent with the existence of three steps as the ratio HNO3/TBP increases. In the first step, ions, postulated as (TBP·H2O·H)3O+ and (TBP·H)2(H2O·H)O+, are formed. In the second step, the molar conductivity decreases as the predominant species becomes TBP·HNO3. In the third step the molar conductivity and the water content increase by the formation of ions such as (TBP·H)(H2O·H)(HNO3·H)O+, in which a nitric acid molecule is bonded to the hydronium ion: the second increase in DM for certain metals is explained by there being similar bonding, through the oxygen of a nitrato group of the metal complex, in place of the HNO3 in this complex ion when HNO3/TBP is >1. The positive temperature coefficient shown by this form of extraction of metal nitrates is also shown in this region by the extraction of nitric acid, the conductivity, and the water content.