ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Glenn E. Sjoden
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 179-189
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2655
Articles are hosted by Taylor and Francis Online.
A new exponential spatial differencing scheme based on zeroth spatial transport moments, the exponential directional iterative (EDI) Sn scheme for three-dimensional (3-D) Cartesian geometry, is presented. The EDI scheme is a logical extension of the positive, efficient exponential directional weighted (EDW) method used in the PENTRAN parallel Sn solver in an adaptive differencing strategy. The EDI scheme uses EDW-rendered exponential coefficients as initial values to begin a fixed-point iteration to refine exponential coefficients. Iterative refinement of these coefficients typically converged in fewer than four fixed-point iterations per ordinate, and yielded more accurate angular fluxes compared to other schemes tested. Overall, the EDI scheme is an order of magnitude more accurate than EDW, and two orders of magnitude more accurate than the legacy diamond zero (DZ) scheme for a given mesh. EDI is therefore a good candidate for a fourth-level scheme in the PENTRAN adaptive sequence. The 3-D Cartesian computational cost of EDI was ~20% more than EDW, and only ~40% more than DZ. Thus, EDI renders increased accuracy using zeroth spatial transport moments in a straightforward manner for any 3-D Cartesian code. More evaluation is ongoing to determine suitability in an upgraded adaptive differencing sequence algorithm in PENTRAN.