ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
D. F. Peppard, G. W. Mason
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 382-388
Technical Paper | doi.org/10.13182/NSE63-A26549
Articles are hosted by Taylor and Francis Online.
In general, the mono-acidic phosphates and phosphonates are dimeric and the di-acidic phosphates and phosphonic acids are polymeric in the diluents commonly employed in metal extraction studies. Therefore, they may be symbolized, respectively, as (HY)2 and (H2Y)x. The extraction of tracer-level M(III) actinides and lanthanides from a dilute mineral acid by representatives of these two classes of extractants in toluene diluent may be represented, respectively, as: where the subscripts A and O refer to mutually equilibrated aqueous and organic phases. However, in an alcohol diluent the H2Y extractants appear to be monomeric, and they extract M+3 cations with a third-power extractant dependency. In toluene diluent, the HY extractants function as dimers, the extractant dependencies for selected M+2 and M+4 cations being: (2-power); Ca+2, Sr+2, Ba+2 (2.5-power, 3-power); Th+4 (3-power). In certain systems, Th+4 is extracted as a species containing one or two nitrate groups. Structures of the extracted species are postulated.