ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
D. B. MacMillan, M. L. Storm
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 369-380
Technical Paper | doi.org/10.13182/NSE63-A26547
Articles are hosted by Taylor and Francis Online.
The applicability of the zero-neutron-lifetime approximation in describing the effects of neutron-level fluctuations is investigated for reactivities near and above prompt critical. It is concluded that meaningful statistical information can be obtained by the zero-lifetime model above prompt critical, and an approximate procedure for joining this model to a deterministic finite-lifetime model is suggested. Illustrative examples, comparing numerical results obtained by this approximation with more accurate finite-lifetime statistical calculations, are presented. In addition, application is made to Los Alamos and Livermore superprompt-critical burst experiments which fall outside of the practical computing range of the finite-lifetime model described in Part II. It is found that the agreement of calculation and experiment is as good as was found previously for a set of subprompt-critical burst experiments.