ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Sauer
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 329-335
Technical Paper | doi.org/10.13182/NSE16-03-329
Articles are hosted by Taylor and Francis Online.
The rational approximation to the escape probability is generalized to contain a geometry dependent parameter. In this way, approximate expressions that are both simple and remarkably accurate are obtained for the escape probability from solid and hollow fuel rods, and for the Dancoff correction in regular rod lattices. These approximations are derived from suitably chosen one-parametric chord distribution functions that have the same general character as the exact chord distributions of the fuel and moderator regions. It is shown that it is reasonable to determine the parameter belonging to each geometry—the geometric index—from the condition that the logarithmic moment of the exact and the approximate chord distribution functions be equal. The geometric indices are given for solid and hollow fuel rods, and for square and hexagonal lattice configurations. For solid or hollow fuel rods the error in the approximation is less than 1 %. The Dancoff correction for rod lattices is obtained with comparable accuracy.