ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
A. Sauer
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 329-335
Technical Paper | doi.org/10.13182/NSE16-03-329
Articles are hosted by Taylor and Francis Online.
The rational approximation to the escape probability is generalized to contain a geometry dependent parameter. In this way, approximate expressions that are both simple and remarkably accurate are obtained for the escape probability from solid and hollow fuel rods, and for the Dancoff correction in regular rod lattices. These approximations are derived from suitably chosen one-parametric chord distribution functions that have the same general character as the exact chord distributions of the fuel and moderator regions. It is shown that it is reasonable to determine the parameter belonging to each geometry—the geometric index—from the condition that the logarithmic moment of the exact and the approximate chord distribution functions be equal. The geometric indices are given for solid and hollow fuel rods, and for square and hexagonal lattice configurations. For solid or hollow fuel rods the error in the approximation is less than 1 %. The Dancoff correction for rod lattices is obtained with comparable accuracy.