ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. D. Groninger, J. J. Kane
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 218-226
Technical Paper | doi.org/10.13182/NSE63-A26503
Articles are hosted by Taylor and Francis Online.
Three parallel plate assemblies were tested to investigate the flow induced deflections of the individual plates. Special strain gages imbedded in the edges of the plates were used to measure plate deflections at flow rates up to 190% of the theoretical collapse velocity. The results indicate that the flow induced deflection phenomenon is essentially a magnification of built-in channel spacing perturbations. The deflections assume a sine wave shape along the long axis of the channel, with the greatest deflections occurring at the inlet to the channels. Adjacent plates always move in opposite directions at high flow rates, alternately opening and closing coolant channels. Above the critical velocity, deflections were observed which were sufficient to cause adjacent plates to touch. At about 1.9 times the theoretical collapse velocity, a high frequency flutter of the instrumented plates was observed. Use of an inlet support comb eliminated this flutter.