ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Amos Norman, P. Spiegler
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 213-217
Technical Paper | doi.org/10.13182/NSE63-A26502
Articles are hosted by Taylor and Francis Online.
A charged particle passing through water creates a thermal spike, a region of high temperature along the track. The thermal spike expands explosively, thus producing a pressure wave, and then breaks up because of surface tension into discrete regions of water vapor and hydrogen gas. These vapor-gas microbubbles can act as nucleation centers in superheated or gas supersaturated solutions. Calculations based on this thermal spike model are presented of the total energy and minimum linear energy transfer (LET) required to form nucleation centers of a given size, and the calculations are compared to published data on the radiation nucleation of superheated and supersaturated aqueous solutions. Calculations are also presented of the pressure created by the rapid expansion of the thermal spike, and of the lifetime of the vapor-gas microbubbles under conditions in which they collapse. The calculations cover an LET range of 0.1 to 10 Mev/µ or, approximately, from the maximum LET of recoil protons in water to the maximum LET of fission fragments in water. The calculations are carried out for a liquid pressure of one atmosphere and two temperature conditions : the minimum temperature at which vapor nuclei of given size will grow and 0°C. The effect of high pressures and temperatures on the radiation nucleation of vapor bubbles is discussed briefly in terms of the foam limit.