ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Moltex demonstrates its WATSS fuel recycling process
Advanced reactor company Moltex Energy Canada said it has successfully validated its waste to stable salt (WATSS) process on used nuclear fuel bundles from an unnamed Canadian commercial reactor through hot cell experiments conducted by Canadian Nuclear Laboratories.
Milton Ash
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 208-212
Technical Paper | doi.org/10.13182/NSE63-A26501
Articles are hosted by Taylor and Francis Online.
In order to greatly increase the power density of boiling liquid reactors, more turbulent and effusive boiling of the moderator coolant must ensue. However, this would entail handling very large random reactivity excursions with its attendant dangers. Perhaps, this problem could be circumvented by a novel, hyper-speed control comprised of “rod equivalent” systems of very fast response. This would allow the reactor to approach its stability limit more closely and thereby increase the power density. To realize such systems, this effort is directed toward a different conceptualization of the reactor control problem as opposed to the less than adequate small excursion linearized theory extant. The idea involved in “bang-bang” control is that of ever driving the reactor toward its equilibrium state as rapidly as possible from randomly perturbed states in which it finds itself because of the turbulent moderator. The control problem is formulated in a fashion analogous to the brachistochrone class of problems, but with a stochastic feature due to the random reactivity fluctuations. Using the methods of dynamic programming, a functional equation in the minimum time for the reactor to be driven back to equilibrium is obtained. From this is derived an optimal reactor control policy. A controller computer can then be synthesized which instantaneously senses the perturbed state of the reactor. It then computes the optimal reactivity policy and sends actuating signals to the “rod(s)” system. The responding reactor is then found in its new perturbed state, which is again read, etc. This procedure continually drives the reactor toward the equilibrium state in the sense of minimum time defined above.