ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Milton Ash
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 208-212
Technical Paper | doi.org/10.13182/NSE63-A26501
Articles are hosted by Taylor and Francis Online.
In order to greatly increase the power density of boiling liquid reactors, more turbulent and effusive boiling of the moderator coolant must ensue. However, this would entail handling very large random reactivity excursions with its attendant dangers. Perhaps, this problem could be circumvented by a novel, hyper-speed control comprised of “rod equivalent” systems of very fast response. This would allow the reactor to approach its stability limit more closely and thereby increase the power density. To realize such systems, this effort is directed toward a different conceptualization of the reactor control problem as opposed to the less than adequate small excursion linearized theory extant. The idea involved in “bang-bang” control is that of ever driving the reactor toward its equilibrium state as rapidly as possible from randomly perturbed states in which it finds itself because of the turbulent moderator. The control problem is formulated in a fashion analogous to the brachistochrone class of problems, but with a stochastic feature due to the random reactivity fluctuations. Using the methods of dynamic programming, a functional equation in the minimum time for the reactor to be driven back to equilibrium is obtained. From this is derived an optimal reactor control policy. A controller computer can then be synthesized which instantaneously senses the perturbed state of the reactor. It then computes the optimal reactivity policy and sends actuating signals to the “rod(s)” system. The responding reactor is then found in its new perturbed state, which is again read, etc. This procedure continually drives the reactor toward the equilibrium state in the sense of minimum time defined above.