ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 155-164
Technical Paper | doi.org/10.13182/NSE63-A26495
Articles are hosted by Taylor and Francis Online.
The monoenergetic integro-differential Boltzmann equation with an arbitrary scattering kernel is transformed to a self-adjoint form and the corresponding Lagrangian written. It is shown that this transformation results in a loss of the continuity (neutron conservation) information contained by the Boltzmann equation. This information is recovered by writing the directional flux as the sum of an even and odd function (in angle) and considering a self-adjoint Lagrangian for only one portion (even or odd) of the directional flux. This procedure is shown to be equivalent to separating the nonself-adjointness from the Boltzmann operator. Further, it is shown that this self-adjoint principle is an extremum principle if the mean number of secondaries per collision is less than one. This self-adjoint formalism is applied to the angular expansion of the directional flux which results in an improved diffusion theory. Numerical results for the linear extrapolation distance and diffusion coefficient are compared with the classical (P − 1) diffusion theory.