ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 147-154
Technical Paper | doi.org/10.13182/NSE63-A26494
Articles are hosted by Taylor and Francis Online.
The variational method as applied to the monoenergetic integro-differential Boltzmann equation is investigated. It is shown that rendering the Lagrangian stationary with respect to small changes in the directional flux and adjoint directional flux is equivalent to solving the Boltzmann and adjoint Boltzmann equations. Topics discussed include the use of variational weight functions, the inclusion of boundary terms in the functional, the interpretation of a variational optimum for a nonself-adjoint operator, and the second variation. It is shown that, for the general trial function ensemble and within a special restricted trial function ensemble, the variational method is a saddle point principle. The formalism developed is applied to the angular expansion in polynomials of the directional flux.