ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
R. G. Sowden, B. R. Harder, K. E. Francis
Nuclear Science and Engineering | Volume 16 | Number 1 | May 1963 | Pages 12-24
Technical Paper | doi.org/10.13182/NSE63-A26474
Articles are hosted by Taylor and Francis Online.
Data obtained from studies of the electrophoretic mobility of thoria and plutonia suspensions have been examined in relation to their dispersion and ion adsorption properties. Dispersion data in many cases bear out qualitatively the concept of a critical zeta potential below which flocculation of the suspension takes place, but exceptions to the rule have been found in a number of electrolyte solutions. Adsorption isotherms obtained from tracer studies and direct analysis have been compared with those calculated from electrophoretic data. Differences between ζ and ψ in the case of hydrogen ions are qualitatively consistent with adsorption on a negative site in the presence of a Stern-type layer of anions. Observations with I−, , Cs+, Sr2+, Ce3+, and Th4+ require a qualified interpretation, and reveal the danger of drawing quantitative conclusions from electrophoretic data unsupported by more direct measurements.