ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
H. L. McMurry
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 429-437
Technical Paper | doi.org/10.13182/NSE63-A26460
Articles are hosted by Taylor and Francis Online.
As an approach to developing methods for calculating differential scattering cross sections of materials for neutrons with energy below 1 ev five approximations to the exact formalism of Zemach and Glauber have been applied to treat the scattering by gases composed of semirigid molecules. This paper outlines the theory for the methods which are the following (1) A quite rigorous method valid when the neutron energy and kBT are both much less than the characteristic vibrational energies of the molecules. (2) A method which treats vibrations harmonically rotations classically, and neglects rotation-vibration coupling. Within these limitations the method is valid at all neutron energies. (3) A method like (2) except that averages over orientation are approximated by the Kneger-Nelkin method of introducing average values of functions of the Eulerian angles wherever they appear. (4) A method which treats vibrations with characteristic energies much less than the neutron energy by a short collision time approximation. (5) A method which treats such low energy vibrations classically. Method (5) has the feature that when all normal modes are treated classically the equation for the differential scattering cross section reduces to that for scattering by unbound particles. If some, but not all, vibrations are treated classically and averages over orientation are approximated as in method (3) the effective mass for a scattering atom attached to the molecule is intermediate between the mass of the atom and the Sachs-Teller mass which applies when all vibrations are treated exactly by quantum mechanics. Method (5) has the advantage of being easily adapted to treating simple models for liquids and amorphous solids. These methods are evaluated in the accompanying paper.