ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L. Leibowitz, L. Baker, Jr., J. G. Schnizlein, L. W. Mishler, J. D. Bingle
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 395-403
Technical Paper | doi.org/10.13182/NSE63-A26456
Articles are hosted by Taylor and Francis Online.
Measurements have been made of the maximum burning temperatures and the propagation velocities along strips of uranium and zirconium foils and wires burning in air. Measurements were made using either a high-speed motion picture camera or a specially constructed two-slit electronic pyrometer. Burning temperatures and propagation velocities were measured as a funcion of both sample width and sample thickness. It was found that burning propagation velocities could be reasonably well described by a thermal propagation theory similar to one applied to flame propagation in gases. Variation of propagation rates with thickness and width of foil were correctly described by the theory. The results of the study are applicable to the combustion of isolated pieces of uranium and zirconium scrap but not directly to the more complicated case of the combustion of large aggregates. Some of the additional factors involved in large aggregate fires are discussed.