ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
L. Leibowitz, L. Baker, Jr., J. G. Schnizlein, L. W. Mishler, J. D. Bingle
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 395-403
Technical Paper | doi.org/10.13182/NSE63-A26456
Articles are hosted by Taylor and Francis Online.
Measurements have been made of the maximum burning temperatures and the propagation velocities along strips of uranium and zirconium foils and wires burning in air. Measurements were made using either a high-speed motion picture camera or a specially constructed two-slit electronic pyrometer. Burning temperatures and propagation velocities were measured as a funcion of both sample width and sample thickness. It was found that burning propagation velocities could be reasonably well described by a thermal propagation theory similar to one applied to flame propagation in gases. Variation of propagation rates with thickness and width of foil were correctly described by the theory. The results of the study are applicable to the combustion of isolated pieces of uranium and zirconium scrap but not directly to the more complicated case of the combustion of large aggregates. Some of the additional factors involved in large aggregate fires are discussed.