ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Edward M. Mouradian, Louis Baker, Jr.
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 388-394
Technical Paper | doi.org/10.13182/NSE63-A26455
Articles are hosted by Taylor and Francis Online.
The burning temperatures and oxidation rates for uranium and zirconium metals in air were investigated analytically. The calculations were based on the assumption that the metal-oxygen reaction is controlled by atmospheric diffusion. Reaction is assumed to be limited by the rate at which oxygen can diffuse through a nitrogen-rich boundary layer. Expressions for mass transfer were obtained by applying the Lewis relation to accepted heat transfer correlations. Calculations were made for the case of vertical plates (foils), horizontal cylinders (wires), and spheres in both natural and forced convection. Characteristic dimensions ranging from 0.02 to 10 cm and flow velocities up to 3162 cm/sec (70 mph) were considered. Computed burning temperatures were compared with experimental measurements of the maximum temperature reached by burning foils of uranium, zirconium, and a zirconium alloy containing 14.9 wt.% titanium in natural convection. Experimental temperatures with zirconium were higher than calculated values while uranium temperatures were somewhat below theoretical. The calculations, however, correctly described the variation of burning temperature with foil width and appear to be good evidence for the proposed model of burning.