ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Edward M. Mouradian, Louis Baker, Jr.
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 388-394
Technical Paper | doi.org/10.13182/NSE63-A26455
Articles are hosted by Taylor and Francis Online.
The burning temperatures and oxidation rates for uranium and zirconium metals in air were investigated analytically. The calculations were based on the assumption that the metal-oxygen reaction is controlled by atmospheric diffusion. Reaction is assumed to be limited by the rate at which oxygen can diffuse through a nitrogen-rich boundary layer. Expressions for mass transfer were obtained by applying the Lewis relation to accepted heat transfer correlations. Calculations were made for the case of vertical plates (foils), horizontal cylinders (wires), and spheres in both natural and forced convection. Characteristic dimensions ranging from 0.02 to 10 cm and flow velocities up to 3162 cm/sec (70 mph) were considered. Computed burning temperatures were compared with experimental measurements of the maximum temperature reached by burning foils of uranium, zirconium, and a zirconium alloy containing 14.9 wt.% titanium in natural convection. Experimental temperatures with zirconium were higher than calculated values while uranium temperatures were somewhat below theoretical. The calculations, however, correctly described the variation of burning temperature with foil width and appear to be good evidence for the proposed model of burning.