ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
L. E. Beghian, N. C. Rasmussen, R. Thews, J. Weber
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 375-381
Technical Paper | doi.org/10.13182/NSE63-A26453
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.