ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
L. E. Beghian, N. C. Rasmussen, R. Thews, J. Weber
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 375-381
Technical Paper | doi.org/10.13182/NSE63-A26453
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.