ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Ury Passy, Naftali H. Steiger
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 366-374
Technical Paper | doi.org/10.13182/NSE63-A26452
Articles are hosted by Taylor and Francis Online.
Most of the energy generated during the fission process is released as kinetic energy of the fission products. This energy moves the fission products a distance of a few microns in solid materials. When the fissionable material is prepared as a powder of particles with diameters smaller than the range of the fission products in the material used, it is expected that the fission products will leave the particles of the fissionable material. To avoid the penetration of the fission product into an adjacent particle of fissionable matter, the latter may be diluted with a liquid or solid diluent. The use of solid diluents having strong adsorption properties is believed to improve the separation between fission products and fuel when sedimentation in water is chosen as the separation method. In a series of experiments, mixtures of U3O8 with infusorial earth and silica gel as diluents having strong adsorbing properties were irradiated. About 95% of the fission products were found in the diluent. Most of the activity of the U3O8 was due to Np. The readsorption of fission products to U3O8 was smaller than in previous experiments in which no adsorbent was mixed with the fissionable material. Surface activation of the U3O8 was found after irradiation. About half of the fission products taken up by the diluent were found to be adsorbed at its surface. Mean fission-product ranges in U3O8 were estimated on an experimental and theoretical basis and agreement between theory and experiment is found to be good for most of the fission products.