ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
G. C. Hanna
Nuclear Science and Engineering | Volume 15 | Number 3 | March 1963 | Pages 325-337
Technical Paper | doi.org/10.13182/NSE63-A26444
Articles are hosted by Taylor and Francis Online.
Skyrme has given a theoretical treatment of the perturbation of the neutron flux in a diffusing medium by an absorbing foil. His theory is re-examined, with particular reference to the modification proposed by Ritchie and Eldridge, and the “edge correction” is evaluated. The accuracy of this modified Skyrme theory is tested by comparison with Dalton and Osborn’s computer calculations for monokinetic neutrons; the agreement is generally better than 1%. This theory is then extended to a Maxwellian neutron spectrum, for which computer calculations are not available, with the result
A is the activity per unit mass of a foil of thickness τ (in units of the absorption mean free path), Ao that of a zero thickness foil, , where t and R are the thickness and radius of the foil. The bars denote averages over the Maxwellian spectrum. The flux-depression parameter g is of the order of R/λtr, but its exact value depends on the velocity dependence of the transport mean free path, and on the thermalization properties of the medium. This formula is used to obtain, from the available measurements of the dependence of A on foil thickness, “experimental” values of g. For both graphite and hydrogenous media they are smaller than expected.